Disruption of Mbd5 in mice causes neuronal functional deficits and neurobehavioral abnormalities consistent with 2q23.1 microdeletion syndrome

نویسندگان

  • Vladimir Camarena
  • Lei Cao
  • Clemer Abad
  • Alexander Abrams
  • Yaima Toledo
  • Kimi Araki
  • Masatake Araki
  • Katherina Walz
  • Juan I Young
چکیده

2q23.1 microdeletion syndrome is characterized by intellectual disability, motor delay, autistic-like behaviors, and a distinctive craniofacial phenotype. All patients carry a partial or total deletion of methyl-CpG-binding domain protein 5 (MBD5), suggesting that haploinsufficiency of this gene is responsible for the phenotype. To confirm this hypothesis and to examine the role of MBD5 in vivo, we have generated and characterized an Mbd5 gene-trap mouse model. Our study indicates that the Mbd5(+/) (GT) mouse model recapitulates most of the hallmark phenotypes observed in 2q23.1 deletion carriers including abnormal social behavior, cognitive impairment, and motor and craniofacial abnormalities. In addition, neuronal cultures uncovered a deficiency in neurite outgrowth. These findings support a causal role of MBD5 in 2q23.1 microdeletion syndrome and suggest a role for MBD5 in neuronal processes. The Mbd5(+/) (GT) mouse model will advance our understanding of the abnormal brain development underlying the emergence of 2q23.1 deletion-associated behavioral and cognitive symptoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trapping MBD5 to understand 2q23.1 microdeletion syndrome

Despite genetic evidence implicating MBD5 as the only overlapping gene between various 2q23.1 microdeletions, the function of MBD5 and its causality to 2q23.1 microdeletion syndrome, a disorder characterized by developmental delay and autistic features, has yet to be determined. In this issue of EMBO Molecular Medicine, Camarena et al generate an Mbd5 genetrap mouse model and show for the first...

متن کامل

The methyl binding domain containing protein MBD5 is a transcriptional regulator responsible for 2q23.1 deletion syndrome

2Iq23.1 microdeletion syndrome is a recently described rare disease that includes intellectual disability, motor delay, autistic-like behaviors, and craniofacial abnormalities. Dosage insufficiency of the methyl-CpG-binding domain protein 5 (MBD5) gene was suggested as the genetic cause, since all the described patients carry a partial or total heterozygous deletion of MBD5. We reported the gen...

متن کامل

Getting to the bottom of autism spectrum and related disorders: MBD5 as a key contributor.

1. Talkowski ME, Mullegama SV, Rosenfeld JA et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 2011: 89: 551–563. 2. van Bon BW, Koolen DA, Brueton L et al. The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype. Eur J Hum Genet 2010: 18: 163–170. 3. Laget S...

متن کامل

The Essential Role of Mbd5 in the Regulation of Somatic Growth and Glucose Homeostasis in Mice

Methyl-CpG binding domain protein 5 (MBD5) belongs to the MBD family proteins, which play central roles in transcriptional regulation and development. The significance of MBD5 function is highlighted by recent studies implicating it as a candidate gene involved in human 2q23.1 microdeletion syndrome. To investigate the physiological role of Mbd5, we generated knockout mice. The Mbd5-deficient m...

متن کامل

Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014